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A B S T R A C T

This paper presents a shallow end-to-end vision-based deep learning approach for autonomous vehicle driving
in traffic scenarios. The primary objectives include lane keeping and maintaining a safe distance from preceding
vehicles. This study leverages an imitation learning approach, creating a supervised dataset for robot control
from expert agent demonstrations using the state-of-the-art Carla simulator in different traffic conditions. This
dataset encompasses three different versions complementary to each other and we have made it publicly
available along with the rest of the materials. The PilotNet neural model is utilized in two variants: the
first one with complementary outputs for brake and throttle control commands along with dropout; the
second one incorporates these improvements and adds the vehicle speed. Both models have been trained with
the aforementioned dataset. The experimental results demonstrate that the models, despite their simplicity
and shallow architecture, including only small-scale changes, successfully drive in traffic conditions without
sacrificing performance in free-road environments, broadening their area of application widely. Additionally,
the second model adeptly maintains a safe distance from leading cars and exhibits satisfactory generalization
capabilities to diverse vehicle types. A new evaluation metric to measure the distance to the front vehicle
has been created and added to Behavior Metrics; an open-source autonomous driving assessment tool built on
CARLA that performs experimental validations of autonomous driving solutions.
1. Introduction

The advances in autonomous vehicle development are in high de-
mand as society grows, raising the need for safer and more conve-
nient transportation, reducing accidents, and alleviating traffic con-
gestion [1]. Releasing human drivers from the chore of driving is
also a goal. Leading companies such as Waymo and Tesla are actively
developing and deploying intelligent vehicles with these capabilities,
including autonomous taxi services in various cities [2,3]. To keep track
of the improvements in these technologies, SAE International (Society
of Automotive Engineers) introduced a classification standard in 2014
that has been widely adopted. The levels of autonomy, outlined in SAE
International’s J3016 article [4], range from total driver control with
passive safety systems (Level 0) to fully autonomous driving without
driver supervision (Level 5).

There are two major approaches for generating solutions in au-
tonomous driving, modular and end-to-end. First, the modular ap-
proach combines smaller independent components that communicate
with each other [5]. Each component is responsible for one particular
task: perception, planning, mapping, control... [6]. Moreover, modules
can be developed to detect crucial environmental elements such as
traffic lights, pedestrians, or other vehicles to prioritize safety and
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respond accordingly. This is the most widespread approach for solving
autonomous driving problems, in part, thanks to its flexibility.

Second, the end-to-end approach directly generates outputs from the
raw input data in a single forward pass. It delegates tasks like detec-
tion, tracking, path planning [7], and control to a machine learning
model. For instance, a deep learning (DL) model. This model has the
responsibility of processing inputs, interpreting and analyzing them,
and making informed decisions to control the vehicle without relying
on other modules [8–13].

In this study, we follow the second approach using deep and imi-
tation learning to train an end-to-end neural network model. The ego
vehicle is equipped with a controller, the vehicle’s central processing
unit. It generates control commands based on the sensory input data
to make the car steer, accelerate, and brake as needed. The sensory
input consists of real-time visual data gathered from a frontal camera
attached to the car. Inside the controller, a deep learning model will be
responsible for performing the tasks of perception and decision-making
from the perceived information, hence the end-to-end approach. More-
over, the vehicle will need to respond appropriately when encountering
other vehicles in its lane. This may involve bringing the vehicle to a
complete stop to wait until the obstacle is cleared, avoiding it [14].
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Fig. 1. Behavior Metrics evaluation software tool architecture with different urban scenarios and vehicles.
The deep learning model inside the vehicle’s controller will be trained
to consider this

Inside imitation learning, one of the principal methods is known
as behavior cloning [15]. This method is employed in robotics and
machine learning to teach an agent or system to mimic a desired
behavior by learning from examples [16]. In autonomous driving,
there are also some examples of successful use of imitation learning-
based approaches [17–19]. These approaches usually rely on vision-
based end-to-end solutions, which are still limited [20] but they are
undergoing an important development lately [21].

Advanced technologies often combine imitation learning with rein-
forcement learning (RL) or other techniques, creating hybrid systems
capable of handling complex tasks [22–26]. Other situations, like road
intersections have also been successfully tackled using deep RL [27].

PilotNet [28] is an important end-to-end model in the field of
vision-based end-to-end control for autonomous driving. This network
receives visual data from a camera as input and generates steering
control commands as outputs. We use this model as a baseline for our
work, introducing refinements.

Simulation plays an important role in data collection, testing, and
validation in the autonomous driving field. SUMO [29] is an open-
source software simulator that mimics realistic traffic situations, en-
abling the evaluation of traffic efficiency and management strategies.
CARLA Simulator [30], another open-source software, offers a cus-
tomizable virtual environment for testing and validating autonomous
driving algorithms, providing multiple vehicle and sensor models for
generating synthetic sensor data. Its versatility and customization allow
easy integration with other common tools in robotics like ROS [31],
which facilitate the creation of applications [5] and easier transfer
from simulation to real-world scenarios. TORCS [32] is also a relevant
simulator with a focus on autonomous driving.

The autonomous driving field already presents a variety of curated
datasets for a diverse range of tasks involved in the domain. For
example, KITTI [33] and nuScenes [34] for visual perception or comma
AI [35] for lane-following (lane-keeping) in a real-world scenario.
These datasets, along with others [36–38], have become benchmarks
2

for researchers and developers in the field. In the present work, we
generate a dataset with three complementary versions for lane-keeping
considering traffic in simulation that is extracted from expert agent
demonstrations. We collected this dataset since the currently provided
ones by the community are not directly suitable for the particular task
of this work. More details about this are provided in Section 2.1.

The research question faced in this paper examines whether a
visual end-to-end DL imitation learning shallow model can successfully
drive an autonomous car to follow its lane in urban scenarios without
colliding with other vehicles in the lane. In certain scenarios, such
as when the hardware is constrained (e.g. edge devices), having a
small, fast, and reliable model is essential [39]. Consequently, we
prioritize simplicity in our models. We introduce and experimentally
compare two variants of the PilotNet model, called PilotNet* and
PilotNet**. Both variants can drive in simulation in the state-of-the-art
simulator CARLA, keeping the lane and the latter also managing traffic
conditions with front vehicles. These models generate throttle, brake,
and steering control from the visual information provided by a frontal
camera installed onboard the vehicle. The models are trained using
an imitation learning procedure from a supervised dataset, generated
from data collected from an expert agent driving in a training scenario.
Adding the throttle and brake to the baseline, the model can drive
following the lane in urban scenarios, also considering turns. Including
the speed into the model, the vehicle can also negotiate scenarios with
leading vehicles, stopping when encountering a vehicle in front and
resuming driving when the short-term path is clear again. The models
are validated experimentally under different conditions in test urban
scenarios, using a variety of front vehicles and proving the general-
ization of the model to never-seen situations. The online experimental
validation is conducted using the comparison software tool Behavior
Metrics (see Fig. 1 for architectural details), which we have updated
including evaluation metrics suitable for the presented problem of
follow-lane in traffic situations. These metrics complement the common
offline evaluation metrics used in machine learning, adding a broader
context to each evaluated model’s benefits and possible limitations.
We consider online evaluation as the one conducted in simulation
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Fig. 2. Detail of included vehicles in each dataset version.
and offline evaluation as the one conducted comparing the model to
supervised data. We keep other autonomous driving tasks out of the
scope of the present work, such as negotiating road intersections or
considering traffic signals.

One contribution of this paper is the proposal of slight modifications
to the shallow baseline PilotNet model, which demonstrates that with
small-scale changes, it is possible to expand its application area widely.
They allow the autonomous car to deal with different ahead vehicles
in the same lane successfully, including those it has never encountered
before, slowing down or stopping before them, resuming the move-
ment, and following them when the safety standards are satisfied. We
experimentally validate this assumption extensively in Section 4 and
its generalization to new scenarios. Another contribution is the new
fine-grain metric in the assessment tool that measures the distance
to other vehicles based on the data extracted from CARLA, which
gives a better intuition about how the robot controller behaves. We
provide all models, architectures, and datasets as open-source, along
with the comparison software tool [40] for validation and extension,
which are also contributions. As a result, researchers may leverage this
advancement to extend or develop an enhanced version of the models,
architectures, dataset, or software.

2. Imitation learning for driving in traffic

In this section, we will discuss the three primary components of our
work. Including the generated dataset versions for imitation learning,
the modifications of the baseline deep learning model PilotNet created
for this work, and the training procedure followed in the development
of the final models.

2.1. Dataset and versions

The supervised dataset is collected on an urban scenario (Town02)
of the CARLA simulator [30] using an imitation learning approach.
The expert agent is an integral component of the simulator with access
to privileged simulator data and it bases its behavior on hand-crafted
rules. It is set to follow a specific route keeping the lane and covering
the urban scenario while the visual data is generated by the camera,
and the corresponding control commands are recorded. The agent’s
maximum velocity is approximately 30 km/h.
3

The route includes turning situations and some encounters with
front vehicles but without possible intersection situations or consider-
ation of traffic lights/signals, which are not in the scope of this work.
For simplicity, we focus only on urban scenarios rather than including
highways. Nevertheless, the ideas presented here are also applicable to
these and other possible scenarios. Through this process, we generated
a dataset of 140K images along with supervised demonstration data.
Approximately, 47% of them are images containing other vehicles
present in it.

We include three dataset versions that complement each other. The
first, Traffic-0, does not consider any traffic factors. The second version,
Traffic-1, includes the former and traffic examples with only one type
of front vehicle, a typical small urban car. The third version, Traffic-
6, encompasses both previous versions and examples with five other
vehicle types including two vans and three urban cars of different sizes
and colors (see Fig. 2. for details about which vehicles are included in
each dataset version).

For training and testing, the ego vehicle is equipped with an on-
board RGB camera that is oriented forward, capturing images with
dimensions of 480 pixels in height and 650 pixels in width (480 × 650).

The image that the deep learning model processes contains a signif-
icant amount of information, but from that frontal image of the urban
scenario, not all the content is relevant. We crop the image to reduce its
complexity. By cropping the image to exclude elements such as the sky
and buildings, which are not needed for generating control commands
in this simplified context, unnecessary data is effectively removed. In
addition to the cropping, the image is compressed. As a result, the
input images are reduced to a size of 66 pixels in height and 200 in
width, representing only about 4% of the original image size. This pre-
processing optimizes the data and reduces the dataset size facilitating
faster training.

2.2. Baseline model and its modifications

The two models proposed for this project are variations of the
baseline PilotNet model [28] (see Fig. 3 for details about each architec-
ture), built using the Tensorflow [41] framework. The baseline PilotNet
network consists of 9 layers which include a batch normalization layer,
5 convolutional layers, and 3 fully connected layers. The first part of

the model is responsible for extracting features from the input visual
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Fig. 3. PilotNet baseline model and its variations PilotNet* and PilotNet**. In red, introduced changes are highlighted.
ata and the latter part generates the final control commands from that
xtracted features.

We introduce enhancements to the baseline model, which are spe-
ific to the current project. The primary motivation behind these mod-
fications is to investigate whether a shallow, established model can
ignificantly broaden its applicability through minor enhancements.

In the first variant, called PilotNet*, an extra output is added along-
ide the steering command. This new output generates control signals
or the throttle and brake. The architecture also includes regularization
echniques, specifically batch normalization and dropout layers [42]
ith a 0.1 rate. The batch normalization layers were already proposed

n the original PilotNet work while the dropout layers are inserted
etween the final dense layers of the PilotNet* model to make it more
uitable for supervised data and prevent overfitting. The dropout rate
s determined through experimental validation. Increasing it further
as been found to yield catastrophic results. The objective behind
he development of this model lies in determining whether a unified
rchitecture can effectively handle multiple outputs of varied natures,
uch as throttle, steering, and brake, thereby significantly enhancing
he overall behavior of the model.

In the second model, called PilotNet**, we build upon the PilotNet*
odel by including the vehicle’s velocity for each time step. This veloc-

ty is added to the input alongside the image, resulting in a final input
mage of shape (66, 200, 4). The extra channel is uniformly filled with
he normalized speed, scaled between 0 and 1. In real cars, this speed
ay be taken from an onboard speedometer. The rationale behind this

ddition is to ascertain whether a model equipped with knowledge of
ts speed outperforms a model lacking such information and to examine
ts impact on the system’s performance in the presence of other vehicles
n the scenario. In Fig. 3 details about each architecture are displayed,
howing their differences.

.3. Training procedure

During the training procedure of each of the models, we introduce
dataset pre-processing stage. In this stage, the data is transformed
4

and prepared for training, including regularization techniques such as
data augmentation. We also include early stopping as a regularization
technique. In this case, we include data augmentation techniques for
adjusting brightness and contrast, modifying the image colors such as
hue, saturation, and value components, adding blur, and simulating
various weather conditions like rain, snow, fog, sun flare, and shadows.
All these techniques are common in data augmentation frameworks,
like Albumentations [43] which is the one used here.

The generated dataset is unbalanced, including a lot of straight-lane
samples where the steering is not relevant. This situation is common in
autonomous driving and some techniques have been already presented
to address this issue, like Dagger [44]. To overcome these situations,
we introduce oversampling of turn situations and generate more data
for particularly relevant urban areas, such as curves. By doing so, the
dataset is more balanced.

For training, the hardware used includes an NVIDIA 3060 GTX GPU.
This hardware is the same used in the experimental validation of the
presented models.

Table 1 presents the Mean Squared Error (MSE) and the Mean
Absolute Error (MAE) of the three proposed models. The loss function
used for training is MSE. While these metrics offer insight into how
the models have been trained and their capabilities, they do not suffice
to draw a definitive conclusion regarding the overall performance and
generalization capabilities of each model in a robotics closed-loop
problem such as this one. To further expand the scope of assessment,
the use of online evaluation metrics is crucial. Behavior Metrics [45]
assists in this endeavor by examining in detail the behavior of each
model in real-time scenarios and providing detailed insights into their
respective performance and adaptability.

To gain a better understanding of PilotNet**’s behavior and to
effectively spot any unusual behaviors, we utilize activation heat maps,
a technique explored in prior studies [46]. This visualization method
allows for an understanding of where the neural network places its
attention, providing useful insights into the decision-making process.



Neurocomputing 594 (2024) 127874S. Paniego et al.
Fig. 4. Activation heat map visualization from the last CNN layer of PilotNet** model.
Table 1
Offline evaluation measures of the model’s performance.

Model PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6

MAE 0.04685 0.04121 0.03842
MSE 0.01138 0.00930 0.00706

In this case, we obtained the activation heat map using the Grad-
CAM [47] algorithm for PilotNet** trained with Traffic-6. Fig. 4 vi-
sually represents the more relevant parts detected by the activations
of the last convolutional layer of the network. PilotNet** recognizes
the lane markings and edges and highlights the wheels of the front
car. The attention placed on the wheels is a result of training with
diverse vehicles, enabling effective generalization and reducing the risk
of collisions with any on-road vehicle.

3. Assessment of autonomous driving in traffic

In this section, we describe the assessment framework created for
this project. In the evaluation of deep learning models, there are
common metrics like MSE that are used for model validation. For
the particular case of autonomous driving, these metrics could be not
enough to understand the overall performance of the model in an online
evaluation. For example, if we look at Fig. 4 we can have a good
understanding of which part of the visual input is more relevant for
the control decision; but we lack some context about how the model
performs driving the car in a test scenario with test front vehicles.

Quantitative evaluation allows us to measure and analyze data
to assess model performance, effectiveness, and quality. More impor-
tantly, this evaluation allows us to compare different neural models
and determine whether changes in training, dataset, or model lead
to performance improvements or not. CARLA provides valuable data
about vehicle performance in specific situations, aiding in evaluating
our models. It offers data such as:

1. Collisions: number of bumps occurred between our ego vehicle
and any actor in the simulation, whether it is another vehicle, a
building, or a prop in the environment.

2. Lane invasions: number of times the ego vehicle crosses a lane
marking.
5

3. Vehicle position: gives us the information on the location and
rotation of any given actor in the simulation.

Merely having access to this data can be limiting if we want to
analyze more deeply the performance of our models. To enhance the
analysis capabilities, we use the Behavior Metrics evaluation software
tool [45] (see Fig. 1. for architectural details). This tool provides soft-
ware for testing various approaches for end-to-end imitation learning
easily. It also allows us to assess and evaluate complex behaviors
for different autonomous robots, using machine learning and deep
learning techniques. It generates several evaluation metrics for each
possible model. Using the raw information given by the CARLA simu-
lator (e.g., collisions, lane invasions, vehicle position) on the Behavior
Metrics tool, we can obtain more interesting metrics that are much
more useful to assess the behavior of the ego vehicle.

The CARLA Autonomous Driving Leaderboard1 is a commonly used
evaluation framework for autonomous driving behavior. Since the goal
of the present project is not directly covered in this framework, we
use Behavior Metrics, including the relevant measurement metrics that
give a better understanding of the model performance in the in-traffic
follow-lane autonomous driving task. These metrics include the previ-
ously presented data extracted from CARLA and some other comple-
mentary metrics:

1. Success rate: this percentage represents the rate of the vehicle
completing one lap. In this case, a lap is considered complete
when the ego vehicle successfully drives from the starting point,
around a preset route and returns to the starting spot without
colliding with other vehicles, objects, buildings, or props along
the way. The routes form closed loops.

2. Mean position deviation (MPD) per km: the average deviation
of the vehicle, in meters, from the center of its designated
lane(centerOfLane) per kilometer. Measured in meters. It is cal-
culated using the mean of all the points obtained using the
minimum Euclidian distance (MinED) of each traversed position
(EgoVehiclePosition) to the center of the lane (centerOfLane). This
equation can be expressed as follows:

MPD = 1
𝑁

∑

𝑖
MinED(EgoVehiclePosition𝑖, centerOfLane) (1)

1 https://leaderboard.carla.org/

https://leaderboard.carla.org/
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Fig. 5. Great, medium, short, and dangerous distances to the front car.
3. Lane invasions per km: number of times the vehicle crosses
into the opposite lane per kilometer.

4. Distance to the front car: this metric is used for measuring
the ego vehicle’s handling of obstacles (see Fig. 5 for details).
Initially, we obtain the distance to the nearest vehicle and the
yaw degree difference between the two cars. This information
helps to determine whether the nearest vehicle is truly ahead of
the ego vehicle or merely passing it in the opposite lane.
This distance is discretized into four bins: great distance (20-50
m), medium distance (15-20 m), short distance (6-15 m), and
dangerous distance (0-6 m). This metric aims to observe how
the ego vehicle maintains a specific distance while approaching
the front vehicle. By analyzing whether the ego vehicle enters a
dangerous distance and to what extent, we can determine if it
progressively slows down when the front car halts or if it fails
to make any effort to avoid a collision, leading to an accident.
This discretized metric establishes a structured framework for
evaluating the ego vehicle’s safety performance, gaining a more
comprehensive understanding of how the ego vehicle adapts to
diverse scenarios.

These metrics are enough for evaluating the in-traffic follow-lane
task, as they indicate the car’s adherence to its lane and the quality of
the other vehicle’s handling, including the Distance to the front car.

4. Experiments

In this section, we conduct an experimental validation of the two
models: PilotNet* and PilotNet** for the task of follow-lane in traf-
fic situations. These experiments provide relevant results about each
model behavior in three different conditions: the first two focused on
typical executions without and with traffic, and the third one testing
the models’ generalization capabilities for obstacle avoidance with a
varied set of vehicles.

For these experiments, we have used the CARLA simulator and
Behavior Metrics evaluation tool running at 10 Hz. The hardware used
for the experiments includes an NVIDIA 3060 GTX GPU. The evaluation
takes place in Town02 where the training data was collected; and
in Town01, which was never used to train the model. We provide
both scenarios to showcase the differences between a circuit already
employed in the dataset generation and a never-seen scenario. For each
experiment, models are trained with a particular version of the dataset,
also showcasing their differences.

The car starts from a fixed position in the urban scenario, driving
clockwise and anticlockwise. These starting points form a closed loop
route, so the vehicle can complete a lap reaching the starting point
again after some time.

We omit a comparison with prior baseline methods as our research
question specifically focuses on whether a shallow visual-based end-to-
end DL model, utilizing imitation learning, can autonomously navigate
6

without colliding with other vehicles. While existing state-of-the-art
models are designed for a broader range of tasks, they often incorporate
more sensors, deeper and more complex architectures, and utilize large
datasets. Prior studies [39] underscore the significance of small and
efficient deep learning networks for autonomous driving, networks
suitable for deployment across various devices with differing hardware
capabilities and we prioritize the simplicity of our models.

4.1. Typical execution without traffic

In this experiment, the model underwent three clockwise laps and
three anticlockwise laps, traversing designated routes within each
town.

This experiment tests the follow-lane capacities of the models.
Specifically, we consider two models to see if they can still effectively
follow the lane in the absence of oncoming cars. The PilotNet* model
trained with the Traffic-1 version of the dataset and the PilotNet**
model trained with the Traffic-1 and Traffic-6 versions of the dataset.
The results for these experiments are provided in Table 2, including the
evaluation metrics presented in the previous section. All three models
drive successfully keeping the lane without any missed attempts, but
we can already see some differences. We can see that PilotNet** trained
with Traffic-6 and Traffic-1 is better in terms of mean position deviation
and lane invasions number than PilotNet*. This fact proves that adding
speed is valuable even in the simplest task of following the lane
without traffic. Furthermore, for the PilotNet**, training with a diverse
dataset like Traffic-6, compared to Traffic-1, can improve the vehicle’s
perception of its surroundings in the town and reduce the possibility of
confusing certain urban sections with front vehicles, making its driving
more confident and smooth.

4.2. Typical execution with traffic

In this experiment, we test the models in a more difficult situ-
ation, with one front vehicle to understand the implications of this
new scenario. The typical execution with traffic consisted of a total
of 12 runs, with the same settings as without traffic. We evaluate
the model’s performance in a full lap simulation, specifically focusing
on both lane-keeping and obstacle avoidance. The additional vehicle
moves independently around the scenario, always preceding the ego
vehicle, and it will drive slowly to disturb the ego vehicle as much as
possible. Although the ego vehicle ignores traffic lights and signals,
the additional front vehicle considers traffic lights and follows their
indications. As in the previous experiment, the models are trained with
the Traffic-1 and Traffic-6 versions of the dataset. The front vehicle
used in the Traffic-1 dataset is the same as the one used for this
particular experiment. In Table 3, the results are shown. We can see
a clear difference now between PilotNet* and PilotNet** where the
latter outperforms the former. This difference in performance dealing
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Table 2
Metrics for two different towns and models in free-road conditions. Success rate: the higher the better; the rest: the lower
the better.

Town01 Town02

Model PilotNet* PilotNet** PilotNet** PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6 Traffic-1 Traffic-1 Traffic-6

Success rate (%) 100 100 100 100 100 100
MPD 0.33 0.3 0.19 0.84 0.49 0.32
Lane invasions 14.884 10.02 4.75 26.56 15.4 3.42
Table 3
Metrics for two different towns and models in in-traffic conditions.

Town01 Town02

Model PilotNet* PilotNet** PilotNet** PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6 Traffic-1 Traffic-1 Traffic-6

Success rate (%) 0 16 81 0 83 100
MPD 43.12 18.07 0.26 50.57 1.97 0.32
Lane invasions 28.87 25.84 6.54 69.65 21.15 1.48
with other vehicles ahead is what makes the PilotNet** a promising
model to be trained with Traffic-6 to generalize to different types of
front vehicles and is more promising than PilotNet* which fails in many
runs.

We observe that the Success rate is higher for PilotNet** trained
with Traffic-6, completing each experiment in Town02 and the majority
of the experiments in Town01, which is the actual test scenario. On the
contrary, PilotNet* results are abruptly worse, without any successful
experiment. These results show that PilotNet* always collides with the
front vehicle at some point in the experiment. The results for the rest
of the evaluated metrics follow a similar pattern. Looking at MPD, we
can see that PilotNet** generates great results, so we can consider that
it can follow the lane correctly while keeping a low number of lane
invasions.

Comparing both PilotNet** models trained with different datasets,
we observe that the version trained with Traffic-6 outperforms the one
trained with Traffic-1. This is evidenced by its more robust under-
standing of the environment, effectively distinguishing between front
vehicles and structures such as buildings. The discrepancy in perfor-
mance between Town02 and Town01 may stem from its inability to
isolate the front vehicle from the urban background

This experiment, not only highlights the importance of having a
much more varied dataset so that the model can drive with other
vehicles in never-before-seen towns but also proves the importance of
adding the speed to the model architecture for optimal performance
in traffic situations. The rationale behind this approach is that by
incorporating the speed into the model, the ego vehicle can enhance
its control over its speed with greater precision compared to scenarios
where this information is not considered. This level of control allows
the ego vehicle to swiftly respond to nearby vehicles by reducing its
speed when necessary, contributing to overall safety and smoother
driving behavior.

In contrast, PilotNet* does not consider the speed of the ego vehicle
during the experiment. It generates control decisions solely based on
instantaneous visual data, which poses challenges in adjusting its ve-
locity. The visual input appears to be deficient in critical information
when encountering another vehicle, as the ego vehicle lacks crucial
data regarding its state and current speed.

4.3. Generalization for different front vehicles

In the final experiment, we test the generalization capabilities of the
models to never-seen front vehicles. For this experiment, we discarded
the PilotNet* model because of its poor performance in the previous
experiment. Instead, we use the PilotNet** trained for the second
experiment with the Traffic-1 dataset, and we compare it to a fine-tuned
7

version of PilotNet** trained with the Traffic-6 dataset.
To assess the generalization capabilities, it was unnecessary to
conduct full-lap trials. Instead, we tested the ego vehicle with a series
of vehicles in front, which moved at a significantly slow pace, stopping
at red traffic lights and resuming driving when the lights turned green.

In this experiment, a total of 12 distinct vehicles were employed,
comprising 8 novel vehicles unseen during the training phase, and
4 vehicles previously encountered in the training dataset (see Fig. 6
for details of used vehicles). We conducted tests with each leading
vehicle traversing the same route in both clockwise and anticlockwise
directions. Finally, we carried out this experiment three times to ensure
the results were reliable. This gave us a total of 72 runs for each model
concluding with a total of 144 runs. Each run gave us two types of
metrics: Success rate and Distance to the front car. The dangerous
distance should be avoided as it is deemed unacceptable in real-world
scenarios which we consider unsafe. Complying with these distances is
crucial for safe driving in real traffic. The Success rate metric measures
cases where the ego vehicle encounters the front vehicle without any
collisions, indicating the ego vehicle’s ability to detect and respond to
obstacles in its path.

Table 4 presents the ratio of the ego vehicle’s distance behind
the front car for a one-kilometer distance, allowing us to assess the
behavior of the ego vehicle. It may be observed that the PilotNet**
trained with Traffic-6 does a better job than PilotNet** trained with
Traffic-1 by spending less time at dangerous distances from the front
car.

Additionally, we can analyze how the vehicle transitions from a far
distance to a close distance by examining the values in Table 4. The
PilotNet** [48] trained with Traffic-6 exhibits a progressive descent of
the speed from greater distances to closer ones, spending more time the
farther it is from the front car and reducing its distance as it approaches,
which leads to the expected stopping behavior. On the other hand, the
PilotNet** trained with Traffic-1 shows almost the same amount of time
spent on medium and short distances. It lacks progressive advancement
and struggles when confronted with an obstacle ahead.

Table 4 also shows the Success rate of each PilotNet** and the better
generalization capacities from the PilotNet** trained with Traffic-6
compared to the PilotNet** trained with Traffic-1.

The fact that this performance is retrieved from Town01 proves that
the models can generalize to other never-seen scenarios. Again, we have
also proved the importance of adding speed to the architecture for a
better understanding of the world that the vehicles use for making their
control decisions.

PilotNet** trained with Traffic-6 dataset demonstrates its capabili-
ties in lane-keeping and adaptive behavior when encountering vehicles
of different shapes and colors. The experimental evaluation shows
that it demonstrates an ability to understand its surroundings and
has proven its effectiveness in maintaining appropriate distances and
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Fig. 6. Detail of vehicles used for experimental validation.
Table 4
Metrics for the distance to the front vehicle.

Town01

Model PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-6

Dangerous distance 6% 2%
Short distance 25% 16%
Medium distance 27% 30%
Great distance 42% 52%

Success rate 16% 86%

Table 5
Success rate metric for each of the 12 vehicles.

Town01

Model PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-6

vehicle.mini.cooper_s 50% 83%
vehicle.volkswagen.t2 0% 100%
vehicle.micro.microlino 50% 100%
vehicle.carlamotors.carlacola 0% 100%
vehicle.jeep.wrangler_rubicon 0% 100%
vehicle.citroen.c3 17% 100%
vehicle.toyota.prius 0% 83%
vehicle.dodge.charger_police 33% 83%
vehicle.kawasaki.ninja 0% 100%
vehicle.diamondback.century 0% 50%
vehicle.ford.ambulance 50% 66%
vehicle.carlamotors.firetruck 0% 66%

avoiding collisions with various vehicles, such as other cars and mo-
torcycles, including vehicles that the model has never seen before
in training (displayed on the last 8 rows of Table 5). The reasoning
behind this result is that, due to exposure to a wider range of vehicles,
the model trained with Traffic-6 demonstrates improved generalization
capabilities, as it gains a deeper understanding of the concept of a
vehicle and develops more optimal strategies when encountering them.

However, there are also some limitations when faced with previ-
ously unseen road users, such as cyclists, ambulances, and firetrucks
(see Fig. 6.). The Success rate for each front vehicle, as displayed in
8

Table 5, not only highlights the overall superiority of the PilotNet**
trained with Traffic-6 compared to Traffic-1, as indicated in Table 4
but also underscores its mentioned limitations. Particularly noticeable
are the lower Success rates associated with the Diamondback Century
(bicycle), ambulance, and firetruck.

Due to its reliance on the visual cues provided by the wheels of
the leading vehicle, as outlined in Fig. 4, the ego vehicle encoun-
ters difficulty in accurately determining whether to stop or proceed
when confronted with a cyclist ahead. This challenge arises from
the narrower tires typically found on bicycles compared to those of
conventional road vehicles.

The challenge posed by ambulance and firetruck detection, as de-
picted in the last two images of Fig. 6, arises from the partial conceal-
ment of their wheels from the ego vehicle’s perspective. This ambiguity
complicates the model’s capacity to consistently distinguish between
car tires and other objects, although it occasionally manages to stop
for such vehicles.

5. Conclusions

This paper presents a proposal for safe autonomous driving in traffic
scenarios following an end-to-end vision-based approach with imitation
learning and deep learning. First, a large supervised dataset has been
generated with many examples of the onboard camera images and
the corresponding control commands recorded from the expert agent
while the car was driving in free-road or in-traffic conditions within
the Carla simulator. This dataset is publicly available [40], along with
models, architectures, and software tool, for replicating results and
further research from the community.

Second, we have developed two deep learning models based on
PilotNet, adding in PilotNet* new dropout layers and outputs for con-
trolling throttle and brake, not only steering commands, and also
including in PilotNet** the speed as input.

Third, those shallow networks slightly modified from the baseline
were trained with this supervised dataset using data augmentation and
balancing the raw dataset. They were experimentally evaluated and
validated. Beyond low values of the loss function in the test dataset, the
system has been validated online with the state-of-the-art Carla simula-
tor, in several Towns, using objective, holistic, and quantitative metrics
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from Behavior Metrics tool. For instance: mean position deviation from
lane center, lane invasions, and distance to the front vehicle.

The experimental results show that the Pilotnet** model, when
trained with the Traffic-6 dataset, successfully drives the car in traffic
conditions without sacrificing performance in free-road conditions. It
also keeps safety distance from the oncoming cars and even properly
generalizes to several types of front vehicles, including vehicles never
seen before in the training stage. These results are observed with
PilotNet** model proving that those model modifications, despite being
slight and applied to an apparent simple model, are good contributions
and enough to achieve the new desired ’drive in traffic’ capability
beyond the basic lane-following behavior.

As future lines, we are working to extend the end-to-end approach
to deal successfully with traffic lights and crossroads and to transfer
this learning from the simulator to a real car. For this purpose, a
new dataset of real-world scenarios and further training for this new
approach would be needed. In addition, more recent state-of-the-art
baseline models will be explored and assessed for the same ’drive in
traffic’ functionality, using both the same training dataset and others
from different expert agents.
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